

SPS Pilot Pilot Case 3: Prothesis Adapter

CIRCULATION all	VERSION	DATE 27-05-2021
AUTHORS SPS		LEAD PARTNERS Jotne, CloudBroker, Additive Industries, TNO
CONTRIBUTING PARTNERS SPS, Jotne, CloudBroker, Additive Industries, TNO		QUALITY CONTROLLER SPS

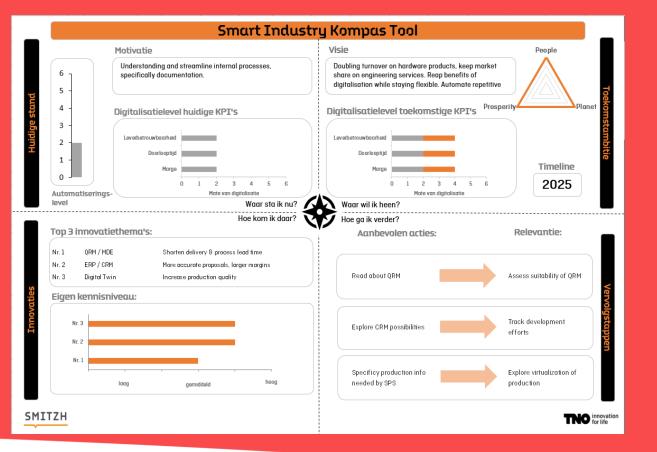
Agenda

- SPS Pilot Outline
- Digitalization : Assessment
- SPS Product Development Cycle
- Main Challenges and Solution Providers
- Pilot Schedule
- Pilot Execution Steps
- Enabling Technologies Used
- Current Status

Pilot : Prosthesis Adapter Design

Main aim:

- Lighter adapter
- Improved design and analysis loop
- Production through additive manufacturing
- Proper tracking of changes in requirements and design during development

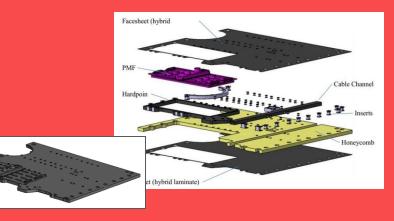


SPS Assessment: Results

The main technologies identified to be implemented are:

- QRM / MDE
- ERP / CRM
- Digital Twin

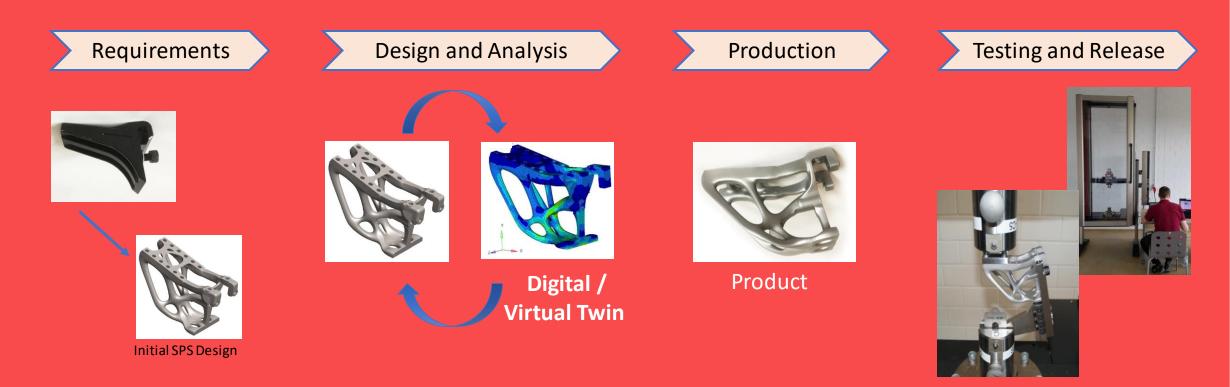
SPACE

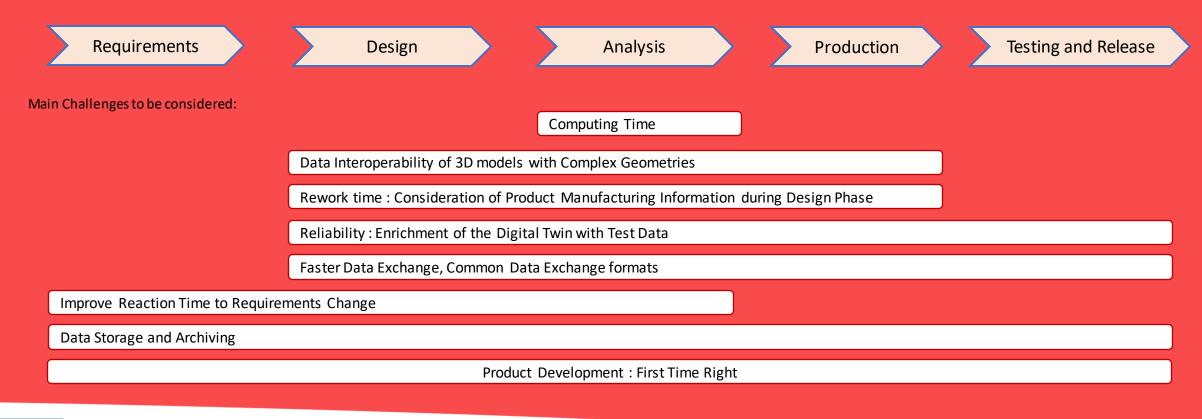


Asset Selection

Main Digital Twin Application Product: **Prothesis Adapter**

Enhancing the digital twin to map the vibration / thermal test data => Improve Digital Twin: Sandwich Panel




Prothesis Adapter: Product Development

Digital Twin: Challenges

Solution Providers and Pilot Application

Solution Providers

- Data Exchange
- Data Storage and Archiving
- O Multidisciplinary data management

Solutions Providers

Product Manufacturing Information,
 Design checking for manufacturing

Computing Performance on Demand

Production: 3D Metal printing

Enrichment of the Digital Twin with Test Data: Photogrammetry

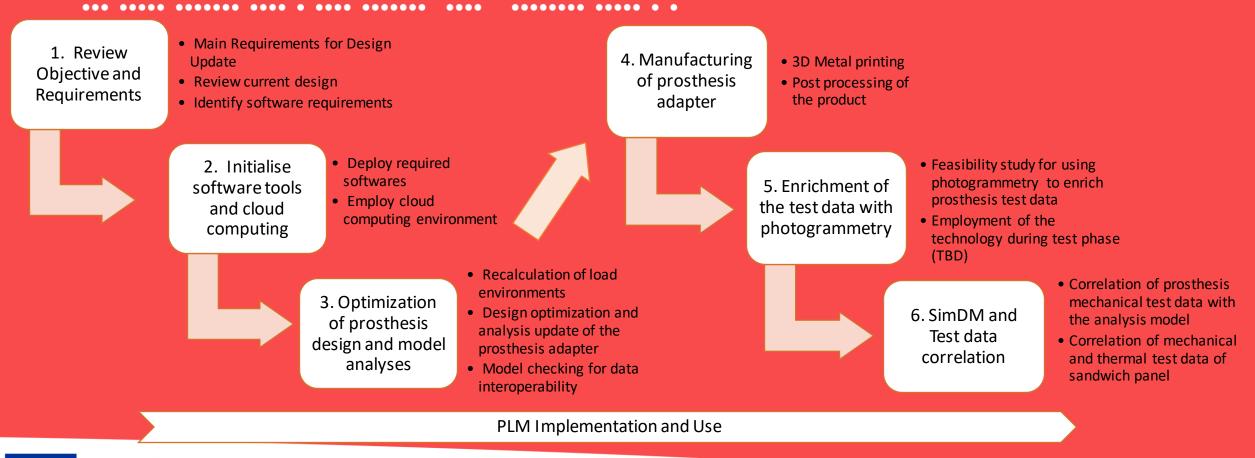
SPS Pilot: KPIs

Process / Topic	КРІ
Data exchange	 Time of the data exchange operation Number of iterations required until exchange is successful
Computing performance on demand	 Time from job submit until the results are received Infrastructure costs
Product manufacturing information	 Number of documents and revisions Non-recurring setup cost Machine parameters and behaviour
Enrichment of the digital twin with test data	 Non-recurring installation cost Correlation time Accuracy increase
Data storage and archiving	 File size Access time Long-term accessibility

CHANGE2TWIN

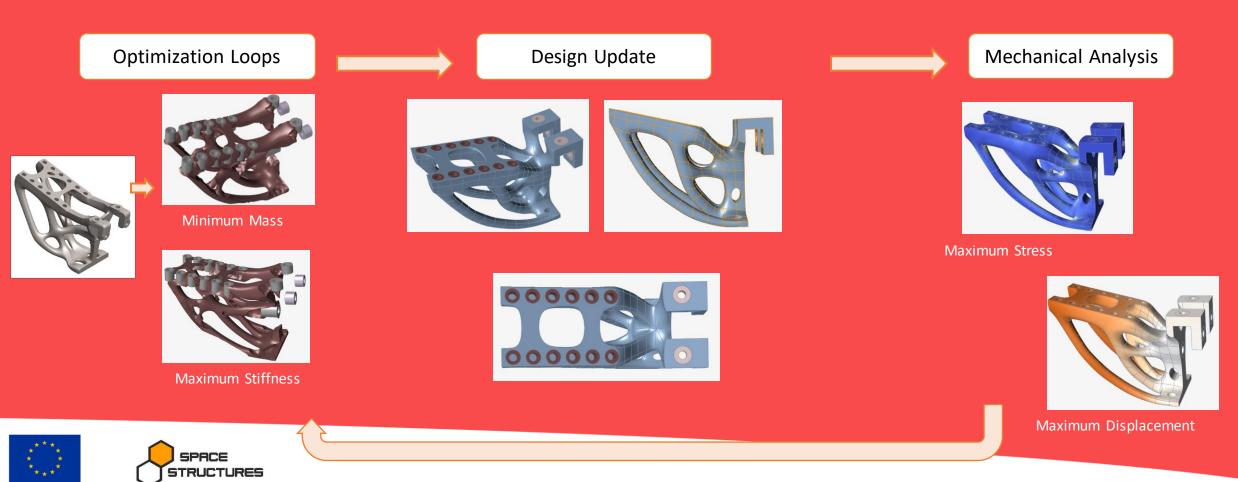
Pilot Schedule

- Model Update Done
- Manufacturing engineering -Ongoing



												Aug 21			
SPS Pilot Schedule	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Pilot assessment															
Pilot plan generation															
Pilot Execution : Virtual Twin Generation															
Continuous Tasks															
Populate PLM system															
Task 1: Review objectives and requirements															
Review and Up-issue of requirements document															
Task 2: Initialise software tools and cloud-computing environment															
Readiness of SPS-in-house design softwares															
Cloud-computing															
PLM															
SimDB															
Task 3: Prepare data/environment for pilot execution "prosthesis adapter"															
Envelope previous geometry as topology draft version for FEM															
Optimisation runs															
Analysis & Geometry checking (incl. compatibility with other softwares)															
STL (or similar) generation and model checking															
Interim Report															
Task 4: Manufacture physical realizations of prosthesis adapters															
Manufacturing engineering															
3D metal printing															
Post processing of printed parts															
Task 5: Enrichment with physical test data															
Photogrammetry															
TNO feasibility study															
Correlation with current analysis results															
Photogrammetry on new prosthesis													////		
Static & Fatigue testing												I			
Process test data															
Task 6: Populate SimDM system															
Sandwich panel data															
Prosthesis adapter															
Feedback and Report Generation															

Twin Building : Steps



Design Optimization and Analysis

HORIZON 2020

Enabling Technology – PLM Software

<u>truePLM – Jotne</u>

- End-user application for standards based (ISO 10303-239) Product Lifecycle Management (PLM).
- Structures a product or project by breakdown elements.
- A Reference Data Library (RDL) enables extensive adaptation to use cases by the end user herself (the application semantics are not hardcoded).
- Interoperability with other engineering tools is provided via ISO 10303, STEP, that is, data exchange by AP239 and AP242
- Implemented to efficiently store data and to track changes at all phases of the product development

Enabling Technology – Cloud Computing

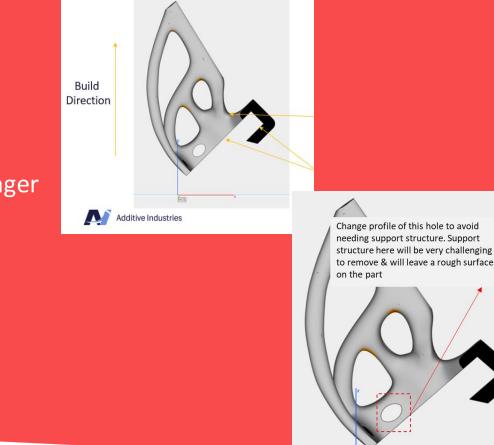
<u>CloudBroker</u>

- High performance cloud space access for computing
- Deployment of Altair software on cloud and access for model analyses
- truePLM access through Windows based virtual machine on the cloud

Home page

Chang	je2Twir	n Platforn	n	Search					
🏡 Home	& Users	Software	Resources	🖷 Storages	🖩 Jobs	🔠 Infrastructure		ome, Spacestructur	
Jobs	🖹 Data File	es 🛛 🗟 Batches	s 🗋 🗄 Instances	@ Slots					
Jobs 🛛									
) New 🗎 D	ownload CSV bil	ling data Show filte	ers						Sea

Job Overview



Enabling Technology- Design for Manufacturing

Additive Industries

- Best practices for additive manufacturing
- Design checking using commercially available Build Manager Software
- Assessment of the printability of the geometry and suggestions for build orientation

Enabling Technology- Data Management

<u>SimDM - Jotne</u>

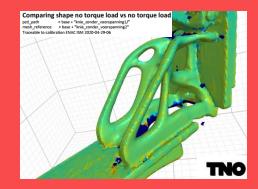
- ISO 10303-209 (AP209) repository and application for managing multidisciplinary analysis, design and test data
- Imports data by AP209, AP242, NASTRAN, Abaqus, Ansys and csv-formats (test data) and combined into a federated model via cross domain correlations
- Possible extension of the application by a 3D viewer (VCollab)

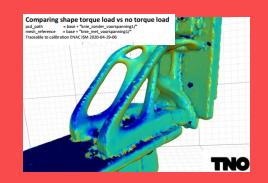
Enables correlation of the test data with the analysis models, thus improve the analysis models (vitual twins)

Enabling Technology – 3D Metal Printing

3D printing and post processing - Additive Industries

- Prosthesis adapter manufacturing using Metal Fab 1
- Post-production heat treatment
- Post processing of the component





Enabling Technology – Photogrammetry

Optical fringe projection scanner - TNO

- 3D imaging technique to analyse the adapter and store data as Stanford Triangle Format for 3D point clouds
- Prosthesis adapter scanned without stress and with applied stress
- Geometry of both states are registered with respect to the M10interface plane and deformation can be established by estimating shift of the surface
- The component geometry (STEP AP214) is split into components and registered individually to establish internal deformation of the component under stress

