

F I R S T R E P O R T O N O P E R A T I N G M A R K E T P L A C E

Deliverable D2.3

CIRCULATION VERSION DATE
Choose an item 1.0 03-03-2022
AUTHORS LEAD PARTNER
Jeroen Broekhuijsen, Armir Bujari,
Roman Dolhai, Damiano Fialconi,
Gladys Gallot, Michał Kulczewski,
Adam Olszewski, Anna
Sumereder, Wilfrid Utz, Robert
Woitsch

 PSNC

CONTRIBUTING PARTNERS QUALITY CONTROLLERS
BOC, ClOUDBROKER, TNO,
UNIBO Jeroen Broekhuijsen, TNO

Gladys Gallot, IR

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 1 of 41

©Copyright 2020-2024: The Change2Twin Consortium
Consisting of

SINTEF SINTEF AS
TTTECH-IND TTTECH INDUSTRIAL AUTOMATION AG
Jotne JOTNE EPM TECHNOLOGY AS
FBA FUNDINGBOX ACCELERATOR SP ZOO
TNO NEDERLANDSE ORGANISATIE VOOR TOEGEPAST

NATUURWETENSCHAPPELIJK ONDERZOEK TNO
BOC BOC ASSET MANAGEMENT GMBH
UNIBO ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
CLOUDBROKER CLOUDBROKER GMBH
IR ASSOCIATION IMAGES & RESEAUX
PSNC INSTYTUT CHEMII BIOORGANICZNEJ POLSKIEJ AKADEMII NAUK
SPS SPACE STRUCTURES GMBH
CORDIS CORDIS AUTOMATION B.V
Unit040 UNIT040 ONTWERP BV
Author-e AUTHOR-E BV
Additive ADDITIVE INDUSTRIES BV
CT INGENIEROS CT INGENIEROS AERONAUTICOS DE AUTOMOCION E

INDUSTRIALES SL
AETNA GROUP AETNA GROUP SPA
Graphenstone INDUSTRIA ESPANOLA PARA EL

DESARROLLO E INVESTIGACION 2100

This document may not be copied, reproduced, or modified in whole or in part for any purpose without
written permission from the Change2Twin Consortium. In addition to such written permission to copy,
reproduce, or modify this document in whole or part, an acknowledgement of the authors of the document
and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

This document may change without notice.

Document History

Version0F

1 Issue Date Stage Content and Changes
0.1 22-11-2021 1 Initial TOC
0.2 17-12-2021 1 TOC agreed
0.3 23-12-2021 1 First draft, including Section 3 and shopping cart
0.4 05-01-2022 1 Draft on Section 4
0.5 11-01-2022 1 Draft on Section 5, updated Section 3
0.6 13-01-2022 1 Draft on Section 2
0.7 14-01-2022 1 Executive summary
0.8 20-01-2022 1 Updates to Section 4
0.9 21-01-2022 1 Addressing internal review comments

0.10 22-01-2202 1 General update
0.11 28-01-2022 1 Addressing QC comments
0.12 22-02-2022 1 Addressing 2nd QC comments
1.0 03-03-2022 1 Final version

1 Integers correspond to submitted versions

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 2 of 41

EXECUTIVE SUMMARY

This first report on operating Marketplace provides insight on the status of the
Marketplace, its development and performance of its operation. The current version
is a step forward comparing to the landing pages, described in previous D2.1 and D2.2
deliverable. The number of offerings were increased to 36, by following the already
shaped onboarding process and processing offerings which are external to the project.
A lesson has been learned that the governance process for onboarding needs to be
swifter, and corrective actions are proposed.

Improvements under development are focused on three areas: allowing direct
usage of the offerings listed for increased uptake, increased search capabilities for
better findability and measuring the effectiveness using an evaluation framework.
These are based on input from the review committee, partners experience from
previous projects, the assumptions made at project-level, analysis conducted in WP1
and initial feedback from DIH. Further feedback from DIHs provided by WP6, offerings
owners and WP1 will be used for future improvements, and discussed in next reports.

User Interface and User eXperience (UI/UIX) have been improved to increase the
uptake of marketplace items and to make DIHs and marketplace owners uptake
our marketplace solution. In particular, they allow DIHs to use and reshape the
marketplace according to their needs. This targets the main WP2 objective: Create
Marketplace Portal for Digital Twin offerings. Also the users are missing possibility to
actually use the offerings listed in the Marketplace. To this end, the middleware is being
extended with an introduction of shopping cart concept, to eventually allow the
deployable services to be directly used. Supportive tools are provided, such as identity
managements, contributing to Establish and adapt marketplace middleware, shop,
and identity management, and we aim this solution to be ready by the next report.

Advanced search capabilities are under development. These will allow users to
benefit from the re-usable marketplace item model. The ADOxx platform is provided
for interactions with models, contributing to the objective: Provide a method for
creating model-based marketplaces. For companies that seek applications for digital
twinning that are the most useful given their goals, an assessment and compass tool
are provided, which in the future will be used to filter the marketplace by selecting
components relevant to the user. And to increase the chance of finding the right
solution, we target the objective: “ Establish cooperation and content exchange with
existing relevant marketplaces” to populate the Marketplace with 3rd party offerings by
developing and using the crawler tool. Still, there are pending legal issues to be solved.

From operational point of view, an overview of the usability, community interest
and potential issues are provided, followed by the evaluation framework. The
monitoring solution has been provided to analyse the community interest in the
Marketplace. Already we have identified that such tools should target different users
such as administrators, offering owners and end users. The future developments will
be liaised with their expectations and the evaluation framework will be developed in
close collaboration with WP1 and WP6.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 3 of 41

TABLE OF CONTENTS

TABLE OF CONTENTS .. 3

1 Introduction ... 4

1.1 Brief marketplace overview ... 4

1.2 Ongoing developments .. 5

1.3 Reading guide .. 5

2 Operating the Marketplace .. 5

2.1 Current status ... 5

2.2 Onboarding .. 8

2.3 Infrastructure ... 11

2.4 Evaluation framework .. 12

3 Improving the Marketplace ... 14

3.1 User management tool ... 14

3.2 Onboarding tool ... 15

3.3 Monitoring tool .. 15

3.4 Shopping cart ... 16

3.5 Assessment tool .. 21

3.6 Advanced search tool ... 22

3.7 3rd party marketplace crawler .. 24

4 Summary .. 24

Appendix A Technical details of the portal .. 26

Appendix B Identified requirements .. 41

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 4 of 41

1 INTRODUCTION

This document presents the first report on operating the Marketplace, describing the
current version of the Marketplace and providing insight on the status of tool
development for the Marketplace. The content here described naturally evolves from
the previous deliverables, in particular D2.1 in which initial operating Marketplace was
introduced, and D2.2 where an extensive discussion on Marketplace model was
conducted. In contrast to previously delivered documents, a clear separation between
the model, middleware and infrastructure is now avoided because they already form a
consistent solution. The motivation for this report is to present how we are shifting from
landing pages to Marketplace portal with developments concerning the model, the
UI/UX, middleware, infrastructure capabilities and supportive tools. Another objective
is to present the Marketplace from operational point of view, to draw conclusions on
challenges and potential enhancements with respect to the users.

1.1 BRIEF MARKETPLACE OVERVIEW

The Change2Twin (C2T) Marketplace is a portal that allows companies to search and
use relevant services and products in their digital twin solution. It is a model-based web
application created using the OLIVE Framework for frontend and backend
components and the ADOxx platform for interactions with models. On a high-level view
(Figure 1), the user interface of the marketplace is an instantiation of web Widgets. The
Widgets are provided by the micro-frontend framework and configured to
communicate with microservices in the backend created through the instantiation of
existing components named Connectors. The Connectors are provided by the
microservice framework, implementing the specific business logic. The services are
responsible to dynamically retrieve the available marketplace items and their details
from a data-lake provided in form of GitLab repositories and to integrate model data
retrieved by the ADOxx meta-modelling platform. Underneath there is infrastructure,
on which marketplace is operated, and hosting some of the deployable offerings. The
middleware is responsible for identity management, shopping card and act as a
mediator between the marketplace portal, model and infrastructure.

FIGURE 1 MARKETPLACE HIGH LEVEL INSTANCES ARCHITECTURE

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 5 of 41

1.2 ONGOING DEVELOPMENTS

The Marketplace holds now 36 offerings, including those external to the project,
and onboarding process is used to increase this number. More will come with the
crawler tool to use 3rd party marketplace offerings, but (legal) agreements will need to
be in place with other sites or marketplaces before these can be activated. The
Marketplace is extended with monitoring to analyse the community interest in it. The
portal is further developed to improve the UI/UX. To this end, additional components
are provided and under developments, such as shopping cart, advanced search
capabilities, assessment and compass tools. The shopping cart will allow some of the
offerings to be directly used in the Marketplace, and we aim to deliver such
functionality with the next report. Similarly, the monitoring tools will provide
information valuable to different kind of users. Corrective actions have been proposed
to onboarding process to make it less involving, and fully automated solution is to be
provided with next report. The remaining developments need to be liaised with
marketplace users, thus an evaluation framework is proposed to survey different users
for their feedback.

1.3 READING GUIDE

This remaining document is organized as follows: Section 2 presents the Marketplace
from the operation point of view. Section 3 gives details on the development of tools.
The challenges, issues and future work are discussed in Section 4. Technical details of
the portal are presented in Appendix A. List of identified requirements and
expectations is given in Appendix B.

2 OPERATING THE MARKETPLACE

2.1 CURRENT STATUS

The Change2Twin Marketplace is hosted and operated by PSNC, and it is available
under http://marketplace.change2twin.eu. Since launching the marketplace landing
pages in M12, the number of offered services increased, the onboarding process is
shaped to ease the governance process, assessment tools are under development,
information exchange between different marketplaces is possible, and shopping cart
is slowly under investigation to introduce deployable services to the Marketplace.
Appendix B lists discovered expectations and requirements.

Currently, the Marketplace is holding 36 offerings: 27 are the internal offerings from
project partners, while remaining 9 are external ones already onboarded. More
offerings are under the revision process, waiting for additional information to be
provided by the owners. In terms of the TRL, 13 solutions are innovation products (level
below 8), and the remaining ones are fully qualified products (level 8-9). Table 1 is
summarizing available offerings.

http://marketplace.change2twin.eu/

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 6 of 41

TABLE 1 SUMMARY OF THE OFFERINGS

Name Owner TRL Type
CAD/CAM Software Imos AG 9 Solution offering
Cloud, HPC & Data Storage PSNC 9 Iaas, Paas, SaaS
Cloudbroker Platform CloudBroker GmbH 8 Software as a service
Design of Hybrid Digital
Twin Solutions

Mobile Middleware
Research Group

6 Software - docker

Digital Twin for Offshore EnginSoft SpA 9 Solution offering
Digital Twin for Planning &
Scheduling

Dijitalis Ltd. 9 Bundle offering for individual deployment

Digital Twin of Process BOC Group 6 Software - package
Digital Twin of Production
Process

BOC Group 9 Software as a service

Digitalization Assessment TNO 8 Consultancy / Online tool / Software tool
Documentation tool Author-e BV. 7/9 Software as a service, on-premise
Dominus EYE Dominus Tech Ltd. 7 Software as a service
EDMsdk Jotne 9 Solution offering
EDMtruePLM Jotne 9 Solution offering
GoTools SINTEF Digital 5 Software library
Interface Development CG-Ingenieros 8 Software and consultancy
IOT Platform MONOM S.L. – ALAVA

GROUP
9 Software as a service

Low-code machine-
control

Cordis Products B.V. 9 Software package

Manufacturing Monitoring ICB 9 Software offering
Marketplace Download
Package

CloudBroker GmbH 5 Software package

Marketplace landing page
service

PSNC 6 Software as a service

Marketplace model BOC Group 4 Software package
Nerve TTTech Industrial 9 Solution offering
OMiLAB Innovation Corner BOC Group 5 Service
Online Community FundingBox 9 Service
Open Call Management FundingBox 9 Software as a service
Open Innovation FundingBox 9 Service
Prespective Digital Twin
Software

Unit040 Ontwerp B.V. 9 Software

Quality-aware Clud-to-
thing Management &
Control Platform in
Support of Digital Twins

Mobile Middleware
Research Group

6 Software docker

Seven Step strategy for
Digital Twins

TNO 7 Methodology & workshops

Simulations models Space Structures GmbH 9 Solution offering: consultancy
SISL SINTEF Digital 8 Software library
Smart Connected Factory TNO 7 Software tool / Software as a service
Service Industry 4.0 CT-Ingenieros 8 Software and consultancy
TRI Soft Digital Twin TRI Soft 9 Solution offering
Your limitless digital twin Ingenieria y Diseno

Estructural Avanzado SL
8/9 Software offering

Your robotics 3D Digital
Twin

Eleven Dynamics GmbH 9 Solution offering

Speaking of the sustainability, the Marketplace is prepared to be offered in two
different versions. A more mature solution is available as a software-as-a-service,
where marketplace can be hosted on the Change2Twin infrastructure and operated by
its owner in similar way the Change2Twin Marketplace is operated. A less mature
solution is offered as a software package for users, DIHs in particular, willing to run the
marketplace on their own and on their / 3rd party infrastructure.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 7 of 41

In order to provide some basic statistics to Marketplace operator, and to provide
feedback to offerings owners, the Matomo analytics platform2 is used starting from
December 1st 2021. By the end of February, there were 202 visits, with an average
duration of 2 min 59s and 4 actions per each visit (page view, download, outlink, etc.),
see Figure 2.

FIGURE 2 MARKETPLACE VISITORS IN PERIOD DECEMBER 2021 – FEBRUARY 2022

Although the number is not yet impressing, it is worth mentioning that the
Marketplace is recognizable all over the world – during first two months visitors came
from 30 distinct countries, though Europe is vastly leading on this one, see Figure 3.

FIGURE 3 MARKETPLACE VISITS PER COUNTRY – DECEMBER 2021 TO FEBRUARY 2022

The most visited offerings are listed in Table 2. A significant increase in visitors is
foreseen with more advanced tools made available, which are discussed in next
sections.

TABLE 2 MOST VISITED OFFERINGS IN PERIOD DECEMBER 2021 – JANUARY 2022

Name Owner TRL Type

Digitalization Assessment TNO 8 Consultancy / Online tool / Software tool
Digital Twin for Planning &
Scheduling

Dijitalis Ltd. 9 Bundle offering for individual deployment

2 https://matomo.org

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 8 of 41

Digital Twin of Process BOC Group 6 Software - package
Design of hybrid Digital Twin
solitoons

Mobile Middleware Research
Group

6 Software docker

Manufacturing Monitoring ICB 9 Software offering
CAD/CAM Software Imos AG 9 Solution offering
Cloudbroker platform CloudBroker GmbH 8 Software as a service
Digital Twin of Production
Process

BOC Group 9 Software as a service

IOT Platform MONOM S.L. – ALAVA GROUP 9 Software as a service
Your limitless Digital Twin IDEA 8/9 Software offering
Smart Conntected Factory TNO 7 Software tool / SaaS
Cloud, HPC & data storage PSNC 9 Iaas, PaaS, SaaS
Digital Twin for offshore EnginSoft SpA 9 Solution offering

Operating the Marketplace for several months now identified several challenges, some
of them are discussed in details in following Sections:

- Governance process issues, Section 2.2;
- Infrastructure efficiency for different types of offerings, Section 2.3;
- Monitoring of resource usage, Section 3.3
- User management, Section 3.1
- Advanced search capabilities, Section 3.6
- Deployable services and shopping cart, Section 3.4

2.2 ONBOARDING

The onboarding is a process defined during the scope of the project to facilitate
appearance of the new offerings on the Marketplace. At a glance, inviting a new
provider is straightforward, but taking into account all the different contextual
information of an item is cumbersome. An item needs to describe the relation to Digital
Twinning, be recognisable for end-users, specify effort required, which type of
process/manufacturing is involved, how an item can be acquired, etc. In order to
facilitate the first stage – accepting a new offer into the Marketplace, we proposed an
onboarding process presented in Figure 4.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 9 of 41

FIGURE 4 ONBOARDING PROCESS

The first stage is to provide necessary information about the offering by sending email
to the onboarding team – marketplace@change2twin.eu. Once there is a new inquiry,
the team responsible for the onboarding process provides details of the offer into the
ticketing system and review of the content takes place. The workflow in ticketing
system is presented in Figure 5. In case of any doubts, the onboarding team may
contact the offering owner for details (waiting status), reject the offer (because no
required information was provided or the information does not fit the Marketplace
profile – rejected status) or pass it for technical review. Now, the technical review is
required in case deployment matters or technical requirements need to be discussed.
At this stage the offer again can be rejected, put on hold or be given a green light to
become part of the Marketplace. After the offer is accepted, the Marketplace is updated
accordingly, finalizing the onboarding process.

mailto:marketplace@change2twin.eu

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 10 of 41

FIGURE 5 ONBOARDING PROCESS WORKFLOW

During the first couple of months of using this process we have learned that there
is room for improvement by making things less human-busy and more automatic.
Figure 6 presents our vision for this improvement. Instead of sending a document with
required information describing an offering, there will be an online webform that will
include initial content check (1). Once submitted, the offering will be automatically
provided into the ticketing system (2). The onboarding team will then have just to revise
the content, just like it is done currently (3). After accepting an offer, it will automatically
become part of the marketplace by the CI/CD (continuous integrations / continuous
development) approach (4).

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 11 of 41

FIGURE 6 AUTOMATION OF THE ONBOARDING PROCESS

The onboarding process is based on the Atlassian Jira cloud solution, which is available
for free, but other ticketing system can be used. The proposed workflow and transitions
can also be changed, depending on the requirements of the Marketplace owner. In the
next report it is planned to propose extension to this process, describing how an
offering can be updated, or deleted if required.

2.3 INFRASTRUCTURE

The infrastructure is used for the purposes of running the Change2Twin Marketplace,
including hosting some of the internal and WP3 pilots offering, managed by the
middleware. Currently, two different types of services are exploited by the
infrastructure – a 24/7 and on-demand service. The 24/7 type is represented by Jotne
and Robopac cases. The on-demand service is provided to SPS, who allows users to run
Optistruct simulations per on-demand basis. Each of these services is using provided
infrastructure, which is then managed by the provided middleware.

Offerings being deployed require: 1) high throughput, 2) large and efficient storage, 3)
computational efficiency. We have identified potential issues and bottlenecks from
the perspective of infrastructure owner, which impacts the end user experience. The
1 and 2 are guaranteed with: the hardware availability (storage), the proper high-
bandwidth network components, and the overall orchestration. For computational
demanding services, e.g. computational simulations, we observed issues with
application efficiency comparing to local machines or those available in HPC
environment. This is due to the fact that infrastructure providers aim to minimize the
number of CPUs being utilized and share CPUs across different services. For most

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 12 of 41

scenario’s dynamically using and switching between CPUs is acceptable. For the
computational-demanding applications this isn't the case, a non-shared CPU and
memory resources needs to be provided. This can be done by providing a separate
region to the cloud where only computationally insensitive applications may run.
Another, yet complimentary approach, is to provide a higher priority to such on-
demand services, so that they can receive CPUs exclusively, while the previously
running applications can be migrated to the co-shared CPUs. These solutions are
currently under revision, so that in the future no efficiency issue shall be observed,
regardless of the offering type and requirements.

2.4 EVALUATION FRAMEWORK

The aim of the evaluation of operating the marketplace is to validate developed
components, tools and features against different users needs, expectations and
requirements to foster future developments. This evaluation will more closely align the
inputs from different work packages.

WP1 focuses on enabling technologies to make them suitable for DIHs and SMEs, and
to become part of the Marketplace eventually. A living document has been provided as
an outcome of tasks T1.3 and T1.4 detailing possible extensions and enhancements to
be introduced to the Marketplace along with some requirements. These requirements
are now under analysis to evaluate their feasibility and importance.

WP6 provides direct connection to DIHs, so it is possible to survey them to receive
feedback on Marketplace look and feel. The Marketplace, promoted as the main place
for DIHs to find digital twin solutions for the SMEs, seems currently underused during
the Assessment process within the Change2Twin project. A survey conducted in
November 2021 following the end of the first round of Assessment process, revealed
that 9 out 14 DIHs involved used the Marketplace to find solutions/technologies for their
digital twin recipes. They wish they could have sufficient information and training to
use this marketplace appropriately. According to them, the number of offers available
has to increase, and following should be added:

- Solution to design complex embedded system and circuits involving optical
sources and sensors;

- Solutions for academic environment;
- Training services and tools to facilitate the introduction and sustainability of

Digital Twin;
- Solutions for decision-making and AI;
- Data integration tools;
- Search engine;
- Success stories;
- API/platform integration;
- Pricing schemes.

In order to strengthen the knowledge of these actors a specific training session on the
Marketplace will be proposed on the occasion of the certification of the DIHs prior the
launch of the next Assessment Open Call.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 13 of 41

The onboarding team provided feedback regarding the way of offering presentation
and requirements. Once there is user management and shopping cart introduced to
the Marketplace, we will need to survey users for further feedback.

For the next report we aim at discussing outcomes of surveying different users and
how it reflects on developments around the Marketplace.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 14 of 41

3 IMPROVING THE MARKETPLACE

3.1 USER MANAGEMENT TOOL

Status: operational, for administrative purposes solely at the moment

The user management is handled by the Keycloak 3 – an open-source identity and
access management for applications and services. The Marketplace can be configured
to use this kind of user management system, which can be installed locally or remotely
to the Marketplace site. Currently, the identity management system is configured to be
used for administrative purposes of the Marketplace and by the middleware. It can
already handle users of the Marketplace, but this feature will be enabled once the
shopping cart is introduced to the Marketplace (see Section 3.4).

FIGURE 7 USER ROLES HIERARCHY

Three different user roles will be available on the marketplace: Admin, Provider and
Customer, as presented in Figure 7. Differentiation between users can be represented
through “key access points” – a list of access permissions which defines whether user is
able to work with only own content or manage entire marketplace. The descriptions
are following:

Key access points

• Items management (being able to edit or delete marketplace items)

• Item history (being able to track changes of marketplace items, e. g. change of
description or its type)

• Operations management (being able to track purchases and shopping carts)

• User management (being able to edit user information and grant users with
access)

Admin has full access, which means he is able to:

3 https://www.keycloak.org

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 15 of 41

• Edit or delete all marketplace items;

• Track changes of all marketplace items;

• Able to track all purchases and see all shopping carts;

• Can edit all user’s information and grant all users with access.

Providers have limited access. It means they are able to:

• Edit or delete only marketplace items he published;

• Track changes only of his published marketplace items;

• Manage and edit only his own user profile;

• Track customer’s purchases only of item he published.

Customers have the most limited access, and are able to:

• Manage and edit only his own user profile;

• Track only own purchases.

3.2 ONBOARDING TOOL

Status: Partially operational, with manual governance

It is planned to provide onboarding tool as described in Section 2.2. This tool will be
based on freely available ticketing system in the cloud, and will come with possibility
to automatically integrate with onboarding online form and CI/CD of the Marketplace.
In this way the onboarding process will be facilitated to the possible extent, yet the
process may be altered according to marketplace owner requirements.

3.3 MONITORING TOOL

Status: operational, at middleware level only

The monitoring is currently handled by the middleware. For the moment being,
following metrics can be tracked:

• Amount of time an instance is running;

• Costs: based on cloud-provider prices, fee type and VAT (optional);

• Logs based on three columns (Date/Time, Severity of message, Message text). It
tracks communication between broker-side and cloud provider as well as checks
if the instance and the connection to it work correctly.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 16 of 41

Additional endpoints can be configured to retrieve additional monitoring information.
An agent-based approach could also be introduced. On each monitored virtual
machine, two agents can be installed – one for the operating system, the other one for
docker. Collected metrics will be scraped by the Prometheus4 open-source monitoring
solution, and then exposed to the middleware for further processing. This will
guarantee that the low-level monitoring can be introduced to any kind of the
infrastructure.

The information need on monitoring varies between users. Marketplace owners are
interested in general statistics, including how many visitors there were, how many
users registered or which offerings are most in demand. A service provider is interested
in detailed statistics of their items being offered to improve their service. Reliability,
returning customers, how the offer is positioned against items alike, how a user reaches
the offer are just few examples. End users may be interested in some analysis of
historical purchases, items used, results obtained. We aim at providing monitoring
data to each of the aforementioned user type.

3.4 SHOPPING CART

Status: concept phase, implementation starts

The next version of Change2Twin Marketplace aims at allowing end-users to use
the offerings, in particular to purchase items. To this end a shopping cart
functionality is required, which concept is here described.

The idea is to implement shopping cart for Marketplace users and adapt it towards
usability patterns to ensure better user experience. The key concept is therefore
described through a single user story: “As a marketplace user (customer), I want to add
an item in my cart, so that I can purchase it”. Considering Ui/UX, users will need to be
able to add offerings from catalogue (add to basket button on every offering possible
to be bought), verify shopping cart (basket button) and update user profile (user
button). An exemplary mock-up is demonstrated in Figure 8.

4 https://prometheus.io

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 17 of 41

FIGURE 8 MARKETPLACE MAIN PAGE WITH SHOPPING CART MOCK-UP

After offerings have been added to the basket, user is presented with a page for a final
revision before completing the order. An exemplary mock-up is presented in Figure 9.

FIGURE 9 COMPLETING THE ORDER MOCK-UP

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 18 of 41

Based on the MasterCard & UsabilityLab research5 we propose the following usability
patterns to be used:

1. THE STEP OF ADDING AN ITEM TO CART SHOULD NOT CONTAIN
UNNECESSARY STEPS AND ACTIONS.

Additional pages that appear when adding to cart makes you feel like you're wasting
time and making unnecessary steps.

The page for adding an item to cart should have an opportunity to proceed with order
placement without looking at the items in the cart.

2. THE INFORMATION THAT THE PRODUCT HAS BEEN ADDED TO CART SHOULD
BE OBVIOUS TO THE USER.

After clicking on the "Add to cart" button the user should be provided with clear
feedback that the item has been added to cart. If a store is more likely to buy only one
item of the same name, then after clicking on the button a second time should take
you to the cart page.

3. THE CART PAGE SHOULD HAVE DETAILED INFORMATION ABOUT THE
PRODUCTS.

In our case it’s offering type, website, description of item, contacts and TRL level.

4. THE CART PAGE SHOULD HAVE INFORMATION ABOUT TERMS OF PURCHASE.

Information about the conditions of purchase can be presented by a link and lead to a
page with detailed information about the conditions of purchase of marketplace items.

5. ITEMS MUST BE STORED IN THE CART UNTIL THE CHECKOUT IS COMPLETE.

If a user interrupts a purchase, for example because of a technical problem, he should
be able to continue the order from the same place. Often the cart is cleared and the
purchase process has to be started all over again. In such situations there is a high risk
that the customer will abandon the purchase.

6. THE ABILITY TO REMOVE ITEMS FROM THE CART SHOULD BE PRESENT BY
DEFAULT ON THE CART PAGE.

Many users use the shopping cart as a way to put off some items for later selection. And
once in the shopping cart, they decide which items from the list they will purchase.
That is why in the cart it is important to designate the possibility removal of unclaimed
items.

5 https://newsroom.mastercard.com/ru/files/2015/06/MasterCard-USABILITYLAB-отчет-
Процесс-оплаты-картой-в-интернете1.pdf

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 19 of 41

Use of the offering in the marketplace

One of planned implementation is providing GoTools software as one of the first usable
offering on marketplace.

GoTools is the name of a collection of C++ libraries related to geometry. The libraries are
organized as a core module with additional modules added on top. The core module
contains generic tools and spline functionality. The additional modules contain
functionality for intersections, approximative implicitization, parametrization, topology,
and more.

GoTools software concerns CAD-system related objectives so the converting process
was chosen as a basic computation task. Our idea is to let user uploads the file to
marketplace and receive result of converting without additional efforts, so that all
computation is being done in the cloud. Initially converter will work with .g22 and .stp
files and amount of file types can scale up in future.

User will have an interface where he specifies filet types to be converted and upload
the one. Once computation is done, it would be possible to download the output. The
preliminary mockup is presented in Figure 10.

FIGURE 10 GOTOOLS MOCKUP

User management

It is planned to use a single user management tool for Marketplace
administrative/operation purposes and for managing different type of users in the
Marketplace (end-users, service providers, offering owners, etc.). The technical details
of the tool are discussed in Section 3.1.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 20 of 41

Invoice generation

Middleware functionality can be extended to use the current invoice generation on
CloudBroker platform. Platform calculates the sum with respect to user’s
infrastructure use, cloud provider’s cost (licenses, storage, hardware), platform fees and
VAT.

FIGURE 11 INVOICE EXAMPLE

Such method could be adapted to middleware side, to calculate usage/purchase of
marketplace items and generate monthly invoice directly to user. In PDF file, see Figure
10, user will be able to see what services were used and what is the total cost for it.

Offering payments / usage plans

Deployable service and direct usage of an offering via the Marketplace will require
introducing a solution to define how the offering can be use and how it should be
charged. Such functionality will be provided after shopping cart feature is enabled, and
discussed in the next report.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 21 of 41

3.5 ASSESSMENT TOOL

Status: operational

The compass tool helps companies to determine which application of digital twin
might be most useful for them given their business goals and the readiness
assessment indicates which components companies need to create that type of
application. The assessment tools are already part of the marketplace offering.

Below are two screenshots of the end-results of the compass tool (which application of
digital twins., Figure 11) and the readiness tool (which components, Figure 12).

FIGURE 12 COMPASS TOOL

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 22 of 41

FIGURE 13 READINESS ASSESSMENT

The output of both tools can be used as an (automated) filter for the use of the
marketplace, selecting the right type of components relevant for a specific type of
application a company needs. Since the assessment can be done online, it can be
directly connected to the marketplace. In its most simple form this requires a feature
that specifies key tags/filters/search-words in the URL of the marketplace that
automatically activate filters so a user doesn't need to go through all items by himself.
This way of integration can also be easily scaled to other solutions that want to highlight
specific components or parts in the marketplace, allowing for more referrals.

3.6 ADVANCED SEARCH TOOL

Status: Operational, in progress

The Marketplace model defined in ADOxx integrate a semantic search for marketplace
items based on an association between each item and semantic concepts defined in a
Triple Store. This enables the user to find the most fitting marketplace item for a
specific need, exploring not only from items of a single marketplace but from all the
items imported from different marketplaces (Figure 13).

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 23 of 41

FIGURE 14 REQUIREMENTS MODEL

A specific model type is introduced for this scope in order to define the capabilities of
the marketplace item and the user requirements. The requirements can be defined
manually or extracted and associated to scenes representing the use case. A semantic
matching is then performed in order to infer which item fit better the needed
requirements. The matching return a matrix view where, for each marketplace model
available (in the rows), all the items matching each requirement (in the columns) are
visualized (Figure 14). In the next release it is planned to provide ranks of the semantic
matching.

FIGURE 15 SEMANTIC MATCHING

The functionality goes to enrich the query search feature of ADOxx that enables a
search based on keywords and item metadata like TRL or license type.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 24 of 41

3.7 3RD PARTY MARKETPLACE CRAWLER

Status: operational, in progress

The Marketplace Crawler is a microservice created using the OLIVE framework, able
to retrieve marketplace items from different type of online marketplaces and add
them to a Marketplace model defined in the ADOxx platform (Figure 15).

FIGURE 16MARKETPLACE CRAWLER ARCHITECTURE

The service performs this operation in different steps: first the marketplace HTML
document object model (DOM) tree is parsed and mapped imported into a generic
DOM model in ADOxx, then each marketplace item in the DOM model is mapped and
referenced to an item object in a specific Marketplace model. This mapping process is
not fully automatic as each marketplace has its own HTML structure and the user input
is required in order to identify the marketplace item in the DOM tree. Finally, the
referenced DOM item is converted in Markdown format in order to align with the
marketplace item format of the Change2Twin Marketplace.

As soon as a marketplace model is generated, all its items can be copied and merged
with the Change2Twin marketplace model that can finally be exported as markdown
items and published in the marketplace portal. The onboarding process can be applied
in the middle of the process for the sake of curation.

4 SUMMARY

In this deliverable we discussed marketplace portal, current status of the tools and
features built inside or around the Marketplace. These developments are going
according to plan. During the next months our work will focus on:

- Improving UI/UX. A specific modelling method for the UI, following the
approach of the modelling method for microservices is still missing and has to
be released in future versions of the framework. Currently the Marketplace
Model type in ADOxx, described in deliverable D2.2, enables the definition of the
marketplace items and their content using models. This model type will be

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 25 of 41

extended in order to also support the definition of the layout and the UI for the
visualization of the marketplace. Improvements in the widget catalogue and
with respect to the configurations are also planned in future releases in order to
support more use cases. An extension will also be created for the orchestration
component in order to support composition of existing services. Finally more
target platforms will be supported. The focus here will be in particular to native
mobile applications for smartphones and IoT devices, like Arduino based
embedded screen devices and augmented reality smart-glasses.

- Providing a shopping cart. This will allow users to take advantage of the
Marketplace, by being able to register, browse the catalogue using advanced
search capabilities or directly use the offering deployed on the infrastructure.
This is the entry point to extend other components, such as monitoring to
analyse users and offerings usage, or user management to advance with new
roles and privileges.

- Finalize the onboarding tool. Providing almost-fully automation to this process
will allow to save significant amount of time, required currently for providing
content to the ticketing system, revising it and eventually pushing to the
Marketplace. Saved time will be used to survey end users or to find ways to
increase number of available offerings.

- Introducing deployable services. Technical solutions will be provided to allow
users to use offerings directly via the Marketplace. To this end, issues related to
keeping history of usage, providing input for the services, notifications or
retrieving results have to be solved.

- Exchange information with other marketplaces. This is one the most
important added value. It will bring possibility not in just having more offerings
in the marketplace, but in particular to build marketplace around offerings
within a given domain, specifically tailored for its users. And it will avoid having a
global marketplace, shifting towards open, federated environment. The work is
in progress, though there are legal issues to be solved before announcing such
feature to the public.

Coming closer to the middle of the project, it is high time to shift focus on user side of
the story and their expectations. We have already identified this as a challenging and
non-trivial task. The actions need to be conducted by WP6 with help of WP1, some of
them may require additional work inside WP2, while others remains under WP6 wings.
Following challenges are identified:

- To define roles for different users, survey them, analyse their requirements and
address their needs;

- Conclude with a common understanding on taxonomy;
- Increase number of offerings and make them more competitive;
- Liaise with other marketplaces to exchange information;
- Encourage DIHs to use our marketplace model;
- Improve UI/UX by better understanding different user expectations.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 26 of 41

APPENDIX A TECHNICAL DETAILS OF THE PORTAL

A1 ARCHITECTURE OVERVIEW

The micro-frontend framework enables the definition of a multichannel UI and in the
C2T Marketplace the UI has been defined only to target web browsers for personal
computers and mobiles. The widgets used includes a Grid UI configured to use data
coming from a microservice that retrieve the list of all the marketplace items, and a
Content UI that is visualized every time an item is selected, configured to communicate
with a microservice responsible to retrieve the marketplace item details. The items
details are defined as Markdown files, enriched with item specific content (images, zip
packages, pdf, etc.), in separate GitLab repositories. There is one Markdown file for each
marketplace item, in order to handle users’ authorization on content edit rights. The
main index UI manages the composition of the UI logic and is responsible to provide
the UI for common features like user login while the deployment list UI visualizes the
available cloud deployments for the current user. In addition to the microservices for
retrieving the marketplace item list and the item details, in the microservice controller
have been instantiated three microservices communicating with the ADOxx platform.
Two of those microservices for generating marketplace items form a specific
marketplace model type: one for populating a marketplace model with items retrieved
by crawling existing marketplaces, and one for evaluating the assessment of
requirements defined in the scene model type with respect to the capabilities provided
by the items in the marketplace model. The marketplace content editors can in this
way provide their contribution both by editing the GitLab spaces as well as by defining
the items in the marketplace model in the ADOxx platform. They can find the most
fitting marketplace item for a specific use case using the assessment and scene model
types. A detailed description of the marketplace functionalities and the specific ADOxx
model types defined, is available in Deliverable D2.2. Figure 16 introduces the details of
the OLIVE framework components used to create the instances of the microservices
and the UI elements for the C2T Marketplace web application.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 27 of 41

FIGURE 17 MARKETPLACE HIGH LEVEL COMPONENT'S ARCHITECTURE

The OLIVE framework allows to create model aware web applications through
configuration of existing components, both for the backend and for the frontend side.
For the backend side such components are named Connectors, and their configuration
results in ready to use REST microservices. For the frontend side such components are
named Widgets and their configuration results in a multi-channel, ready to use, user
interface. Both the Connectors and the Widgets are part of the OLIVE platform but can
be extended if needed by using plug-ins. Connectors provide the functionalities of the
backend services enabling the connection to external systems like databases, CMS, or
message buses. The framework provides out-of-the-box connection to more than
twenty services and data storage systems. As soon as a Connector is configured a new
microservice instance is created, executed, and exposed through a REST interface with
standardized input and output format. The lifecycle of the service can then be
controlled by the framework. Instantiated services can be orchestrated for a more
complex business logic if needed. This configuration approach enables the definition
of specific models that reflect the microservice definition. The integration with the
ADOxx platform provides a complete environment where (a) the microservices and UI
elements can be created from scratch starting from models and (b) models can be
used as data with recognized semantic by the microservices, like in the case of the
marketplace model type.

Widgets on the other side are reusable components for the frontend and provide the
UI for sections of the application targeting a specific channel. The presentation
channels most supported by the framework are web browsers, for both desktop and
mobile devices, and MS Teams pages. Currently, only limited support is provided for
other channels like IoT devices and mobile apps. Widgets can be generic like visualizing
a grid layout or more specific like visualizing a marketplace item page and supports the
connection with microservices defined in the framework in order to obtain the needed
data or provide the user experience for the microservice feature. Like the Connectors
for the microservices, also the Widgets can be configured with specific parameters.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 28 of 41

Their configuration results in new UI instances that could be then combined and
exposed to a specific endpoint or device.

The strength point of Olive is its model awareness in the sense that such configurations
are abstract enough that can be represented as models and the out-of-the-box
integration with the ADOxx modelling environment allows to create the whole looks
and behaviour of the application, drawing models. This integration allows also ADOxx
to communicate with the external world through a common interface in a bi-
directional way, so using the features of existing microservices to enrich the modelling
platform and using models as data for microservices. The Figure 17 shows the approach
used by the framework for the definition of applications starting from
conceptualization in models, which is used for configuration of existing components,
resulting in different running instances of the application.

FIGURE 18 OLIVE WEB APPLICATION DEFINITION METHODOLOGY

In this way, the Olive platform provides a cloud environment where the user,
instantiating existing components with specific configuration, can define the
microservices (that can use and be used by ADOxx) and the user interfaces of its
application, expose it to the public and control its lifecycle.

A2 OLIVE MICROSERVICE CONTROLLER

The Olive Microservice Controller is a backend component that allows to define and
manage Microservices in a novel way, following the configuration approach. A
Microservice in Olive is defined only through the configuration of an existing platform
component named Connector.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 29 of 41

A Connector is a component developed in form of OSGi plug-in that allow to provide a
specific functionality, like perform a query on a MySQL database or publish a post on
Twitter. The name Connector derives from the fact that usually such functionalities
depend on external systems (like the database) and the Connector is responsible to
connect to such systems to exploit their features.

FIGURE 19 OLIVE MICROSERVICE CONTROLLER ARCHITECTURE

Olive Microservice Controller (Figure 18) allows to manage the configurations of such
Connectors, giving the possibility to create Microservices and control their whole
lifecycle. It is responsible of the Lifecycle management component to (1) generate an
instance of the REST microservice from the configuration, (2) allow to start the
microservice, (3) keep the microservice running in an isolated environment, (4) allow to
stop the microservice and (5) allow to dismiss it.

The OSGi Connectors Loader component is responsible to load all the Connectors and
make them available to the platform. It is built on the OSGi framework Apache Felix
and will dynamically check the presence of the OSGi bundles (plug-ins) defining
Connectors, loading, and unloading them on request.

As soon as the Microservices have been defined, they can be combined to achieve the
business logic task thanks to the Orchestrator component. This component is
responsible to combine existing microservices using in future the Enterprise
Integration Pattern notation. To support a higher level or freedom the orchestrator
allows also to use the JavaScript scripting language to combine microservices following
so a more programmatic approach.

The Olive Microservice Controller exposes all of these functionalities both with Java and
REST APIs. The former is used to integrate the Olive platform in local and desktop
application. The latter are used to integrate the Olive platform with remote
applications. All the microservice controller features are available also through a

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 30 of 41

management web UI, built on top of the microservice controller REST APIs, that
enables the management of each microservice lifecycle.

A2.1 OLIVE MICROSERVICE DEFINITION

A microservice in Olive is defined through a JSON file that contains the configuration
of a specific connector. The Olive platform can use this configuration file to create an
instance of the connector and expose it through a REST API. A connector is a function
provided by the Olive framework, responsible to perform a specific operation. An
example is the MySQL connector that allows to query a MySQL database, or a Twitter
connector that allows to post and retrieve posts on Twitter.

The connectors are structured in a way that allow to specify which part of the specific
operation must be performed at microservice start, execution and stop. As example,
the MySQL connector will establish the connection with the database during the
microservice start phase, will perform the query during the execution phase and will
close the connection during the stop phase. This allows to support connection pooling
and reuse the same database connection for all the microservice requests, increasing
the response time. The configuration of the connectors is relevant to the start and
execution phases. Considering again the MySQL connector, the configuration of the
start phase (that perform the connection to the database) allows to specify the
database endpoint address and port, the database name, and the access credentials,
while the configuration for the execution phase allow to specify only the query to
perform.

With this configuration Olive generates a REST service that connects to the specified
database and perform the configured query, returning the results in a tabular format
as defined by the connector.

Olive integrates out-of-the-box 24 connectors. Custom connectors can be added to the
platform as OSGi plugins. This allows to reuse existing OSGi based connectors like all
the one provided by the Apache Camel project.

Olive distinguishes two kinds of connectors, depending on the communication pattern
required:

• Synchronous connectors: types of connectors that provide a functionality on
request. Such kind of connectors are used to create REST microservices that
once called, perform some operations and return the results to the users. An
example is the MySQL connector that is used to create microservices that on
user request will perform a query to the database and return the result to the
user.

• Asynchronous connectors: types of connectors that perform operations mainly
in background. The Olive platform creates REST microservices also from that
connector, but they do not return the operations results to the users but in

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 31 of 41

contrast start to process the request in background. Such kind of services may
also not require the interaction with the users at all. Due to that fact, the Olive
platform allows to attach to such microservices a previously defined
synchronous microservice used to process their results. A typical example is a
microservice that listens to a message bus. This microservice continuously
checks in background the presence of new messages and as soon as a message
is received will forward it to a microservice responsible to store it in a MySQL
database.

We can summarize that the synchronous connectors are used to create microservices
that start to work as soon as the user requests them, while asynchronous connectors
create microservices that start to work as soon as the microservice is started.

Even though the main business logic of the microservice is provided by the used
connector, the inputs, and the output format of the microservice can be adapted. Those
adaptations are also specified defining them in the microservice configuration.

Olive allows also to check the status of the microservice. By default, Olive automatically
recognizes if a microservice is started, stopped and if its connector incurred in an error.
In addition, the user can define how the output should look like in terms of format and
data content. This allows to perform a deeper status check taking into account also the
semantic of the output.

Microservices in Olive are organized in structures named Operations. Operations are
methods that relate to the same microservice and are the objects that contain the
configuration of the connectors, the definition of the inputs and the adaptation of the
outputs. Operations are uniquely identified by their name inside a microservice, which
is instead identified through a unique ID.

A2.1.1 MICROSERVICE INPUTS DEFINITION

The definition of inputs for a microservice allows to have the microservice configuration
partially customizable by the user through its inputs. In the microservice definition it is
possible to define which inputs are required by the final users and how these inputs
will impact the microservice configuration. Since the final user interacts with the
microservice only during its execution (and not during the start and stop phases), the
inputs can affect only the microservice configuration section related to the execution
phase. As an example, we consider a microservice that uses the MySQL connector to
perform a query to a database. This connector allows to configure the database
endpoint and credentials used during the starting phase of the microservice. This
means that such information cannot be customized asking the final user for inputs. The
configuration of the query to perform is defined instead in the execution phase, so we
can create a microservice input definition that customizes the query. This means that
we can or ask the whole or only a part of the query to the final user as microservice
input.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 32 of 41

The customization of the microservice configuration through microservice inputs is
done using a match and replace mechanisms. In the configuration of the microservice
it is possible to specify placeholders that will be replaced (previous validation) at
execution time with the matching microservice input provided by the final user. So, the
definition of a microservice input requires only a unique name for the input and the
name of the placeholder that is used in the configuration for the execution phase.

Using the previous example and imagining querying a database with the following SQL
statement:

SELECT name FROM users WHERE mail=”Damiano.falcioni@boc-eu.com”;

If we want to have the mail as microservice input, we must first add a placeholder to
the query like:

SELECT name FROM users WHERE mail=”$mail_input_placeholder”;

And then define an input with name “mail_ID” and placeholder
“$mail_input_placeholder”.

When the final user calls the microservice REST endpoint, an input like the following
JSON object is part of the POST request:

{
 “mail_ID”: {
 “value”: “Damiano.falcioni@boc-eu.com”
 }
}

The value provided for the input “mail_ID” will replace the placeholder string
“$mail_input_placeholder”. The resulting query will be performed, and the result
returned to the final user.

A2.1.2 MICROSERVICE OUTPUTS DEFINITION

When defining a microservice it is possible to adapt the output of the configured
connector used in the microservice, providing an algorithm in the JavaScript
programming language. Such an algorithm can be used to parse the connector output
and convert it in the required format or do complex data processing operations. Due to
the high level of freedom left to the user, in this case there are some configurable
restrictions about the maximum allowed execution time of the algorithm and about
the allowed operations (for example operations on file system are denied). Despite such
restrictions the following additional data variables and functions are available:

• output: a variable containing the JSON object returned by the connector;
• input: a variable containing the JSON object provided as input by the final users

to the microservice POST endpoint;

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 33 of 41

• out({..}): a function used to return the final adapted output. This function must be
called as the last instruction of the adaptation JavaScript. it accepts as an input
a JSON object;

• callMicroservice(microserviceId, operationId, microserviceInputs): a function
used to call an existing microservice and obtain its output. It is used to ease the
creation of complex adaptation scripts by reusing existing microservices and can
be used also to chain together microservice functionalities. It requires as input
the unique id of the microservice, the id of the microservice operation to perform
and a JSON object containing the required microservice inputs. It returns a JSON
object containing the output of the called microservice.

A2.1.3 MICROSERVICE DEFINITION WITH ADOXX MODEL

The Microservice Definition Model type is an ADOxx library that allows to model the
exact behaviour of microservices and publishes them in the Olive Microservice
Framework. The definition of microservice using models is possible thanks to the
nature of the Olive platform that defines microservices through configuration. In this
way the models can be used not only to document but also to configure the
microservice behaviour.

A specific meta-model in ADOxx allows to model the definition of microservices and
how they should be orchestrated. The Olive microservice framework can communicate
with ADOxx in order to retrieve such models and define based on them the different
microservices.

FIGURE 20 MICROSERVICE DEFINITION MODEL SAMPLE

A Microservice Definition Model is composed of objects representing microservices of
different types, based on the Olive Connector used, and relations representing
dependencies between microservices, see Figure 19 for an example. Each of the specific
microservice type object has a set of common and specific attributes accessible from
its notebook. Common attributes are the description of the microservices and its auto-
start value as well as all the attributes related to the input and output. The microservice
inputs can be specified in a tabular form where each row is an input with information
about its id, placeholder, description, and sample. The output can be instead adapted
providing a specific JavaScript algorithm with the relative description of the new
output. Figure 20 presents microservice definition with inputs and outputs.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 34 of 41

FIGURE 21 MICROSERVICE DEFINITION MODEL, INPUT AND OUTPUT ATTRIBUTES

Health information is the last set of common attributes to all microservice objects and,
like in the web interface, the user is allowed to specify the JavaScript algorithm that will
be applied in order to validate the microservice output and check if the service is
running properly or not.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 35 of 41

FIGURE 22 MICROSERVICE DEFINITION MODEL, START AND CALL ATTRIBUTES

The notebook sections named “Start” and “Call” contain instead the microservice
specific attributes dependent on the Olive Connector used. In the example in Figure 21,
the microservice is based on the Olive REST Connector and the “Start” related attributes
allow to specify the HTTP method, Content type and headers of the REST request to
perform, while in the “Call” section there are attributes related to the REST endpoint,
query-string, and the optional data to post.

As soon as the microservice model is completed it can be published directly from the
modelling environment thanks to the “Publish Microservice” function available in the
“Extra” menu bar. The function will prompt the endpoint of the Olive Microservice
framework used for the deployment, and it will automatically make it live.

A2.1.4 CONNECTORS COLLECTION

Olive provides out-of-the-box the following connectors:

• ADOxx Classic Connector: This connector allows to communicate with the
ADOxx Modeler Classic (desktop application) exploiting its SOAP interface. This
allows to execute custom AdoScripts (only a restricted set is allowed) remotely
and create microservices that interact with models.

• Camunda DMN Engine Connector: This connector allows to evaluate a DMN
model using the DMN engine provided by Camunda.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 36 of 41

• Content Provider Connector: This connector allows to provide an arbitrary
content to download. It is used to create microservices that return previously
uploaded data.

• Content Receiver Connector: This connector allows to upload an arbitrary
content and store internally in the platform. It is used to create microservices
that upload data needed by other microservices.

• KPIs Engine Connector: This connector allows to calculate the KPIs, and metrics
defined in a KPI model and return their value. The connector can interpret the
model, identifying dependencies between KPIs and evaluate their value and
success status.

• Excel Connector: This connector allows to read values available inside an Excel
document, evaluating formulas and controlling the cells to read.

• Facebook Connector: This connector allows to interact with the Facebook
Graph API. This allows as example to publish and retrieve post, comments, find
users, etc.

• Fuseki Triple-store Connector: This connector is used to publish and retrieve
content from the Fuseki Triple-store. It allows to perform SPARQL queries to
interact with the ontology defined in the triple-store.

• HP Printer Monitor Connector: This connector allows to retrieve the colour level
of a network connected HP Printer. This is used to create microservices that
continuously monitor the status of an HP printer and notify the administrator in
case of problems.

• JavaScript Engine Connector: This connector allows to execute a JavaScript
code evaluating it using the Java Nashorn engine. The JavaScript is executed in
a restricted environment for security reasons, and this allows to create general
purpose microservices that perform any kind of operation available in the
JavaScript programming language.

• JMS Publisher Connector: This connector is used to connect to a message bus
compatible with the JMS standard and publish some content on a specific topic.

• JMS Subscriber Connector: This connector is used to connect to a message bus
compatible with the JMS standard and listen for new messages on a specific
topic. This is a connector that follows the asynchronous communication pattern.

• Microservice Connector: This connector is used to schedule the execution of an
existing Microservice and run it in background. This is used to convert every
synchronous microservice in an asynchronous one.

• MSSQL Connector: This connector allows to perform a generic SQL query in a
remote Microsoft SQLServer database. This allows to both insert and retrieve
data from the database.

• MySQL Connector: This connector allows to perform a generic SQL query in a
remote MySQL database. This allows to both insert and retrieve data from the
database.

• OMiLAB Reservation Service Connector: This connector allows to control the
access to another existing microservice, using the functionalities of the OMiLAB
Reservation service that allows to reserve a device for a specific time slot
generating a secret token that must be used to access the services on that
device only during such a time slot.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 37 of 41

• REST Connector: This connector allows to communicate with existing remote
services exposed through the REST protocol. It can be used to create
microservices that exploit the features of external services through a
wrapping/proxying around the original service functionalities.

• SMTP Connector: This connector allows to interact with a remote SMTP server
to send an e-mail programmatically.

• SOAP Connector: This connector allows to communicate with existing remote
services exposed through the SOAP protocol. It can be used to create
microservices that exploit the features of external services through a
wrapping/proxying around the original service functionalities.

• Twilio SMS Connector: This connector allows to exploit the SMS sending
functionalities provided by Twilio. It can be used to create microservice that send
SMS programmatically like in response to specific events, acting as notification
mechanism.

• Twitter POST Connector: This connector allows to interact with the Twitter API
to post a tweet in the configured account.

• Twitter Search Connector: This connector allows to interact with the Twitter API
to find tweets matching a specific search query.

• Twitter User Info Connector: This connector allows to interact with the Twitter
API to retrieve information about a specific tweet user.

A2.2 MICROSERVICE INSTANTIATION

As soon as the microservice has been defined, Olive makes available a REST endpoint
that exposes the microservice. At this point the microservice is ready to be used. The
REST endpoint requires the unique id of the microservice and the name of the
microservice operation to be executed as query parameters. In contrast, microservice
inputs must be provided in form of a JSON object passed as POST data. The output is
returned also as JSON object with a standard structure that encapsulates the
microservice output. Olive uniforms the interfaces of all the defined microservices
exposing them in a REST endpoint with a POST method based on fixed query string
parameters, POST data and output format.

If the microservice is called before being started, it will start automatically. The Olive
Microservice framework allows also to manually control the starting and stopping
phase of a microservice to deallocate resources on the machine. These operations are
all manageable through the APIs of the Olive Microservice Controller framework as well
as through the management interface.

During the starting phase of a microservice a new thread is executed and kept active
till its stopping. In the thread, the configured connector used by the microservice is
initialized. The configuration relative to the starting phase is used for this initialization.
As soon as all the initialization operations are completed the microservice is in a started
phase and ready to be executed. When the microservice is not used since a long time

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 38 of 41

or on user request, it can be stopped. All the stopping operations of the connector are
executed, and the thread will be terminated.

The thread isolation level is something that is not so common in microservice
development due to its insecurity over shared variables. This is true but only if the user
writes insecure code. The Olive Microservice Controller, following the approach of
defining Microservices through connector configuration, does not allow the user to
create insecure code. The vulnerable point is in the development of new connectors
that the user may require. In this case the user is responsible for the deployment of a
local instance of the Olive Microservice Controller and of its security. In contrast, if the
new connector is proposed to the community, it will follow a deep review process
before being released and available to download in the Olive Microservice Controller
package.

A3 OLIVE MICRO-FRONTEND FRAMEWORK

The Micro-frontend framework, presented in Figure 22, applies the same
methodologies used in the backend by the microservice controller to the UI level. The
application’s look and feel is constructed, using the micro-frontend framework,
through configuration of available UI components named Widgets.

A Widget for the UI of a web application is provided in form of a standard Web-
Component module that can be rendered in a Web Browser (on both desktop and
mobile devices). The framework includes widgets that target different platforms, but
mostly focus on Web Browsers and MS Teams pages.

FIGURE 23 OLIVE MICRO-FRONTEND ARCHITECTURE

The OLIVE framework allows to define the configuration for each widget resulting in a
specific instance of the widget. As a sample, the marketplace item visualization widget
is instantiated several times, each one with the specific marketplace item content. The

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 39 of 41

different instances can then be combined through the configuration of widgets
specifics for the layout.

Both the widgets and their configurations are provided in a community-based
repository that enables the component sharing and that can be imported into the
framework for extension.

Each instantiated widget can be finally exposed publicly by the framework to a specific
endpoint, responsible to deliver the widgets and its configuration to the supported
clients.

A3.1 UI WIDGET DEFINITION

A Widget instance is provided in form of a JSON file containing the configuration for
the specific Widget. Each widget targeting web platforms is in form of a standard Web-
Component enriched with a manifest that specifies what are the required inputs and
the expected results of the widget. This allows to align with latest HTML standards and
reuse existing components provided by other frameworks. Additionally, as currently
the most relevant web frameworks, like React or Vue, support the creation of Web-
Components, their development does not require additional specific knowledge
related to the OLIVE framework.

In the manifest of each widget can be optionally defined another widget responsible
to provide a customized configuration UI, specific for the widget. This allows to use
widgets not only for the final web application but also to enrich the user experience of
widget configuration inside the OLIVE framework.

The OLIVE Micro-frontend framework enables the collection of the defined
configurations for each user and make them available to other widgets, in particular to
the ones responsible for the layout of the interface. This enables the composition of the
final UI using small feature specific UI elements in accordance with the micro-frontend
methodology.

A3.2 UI WIDGET INSTANTIATION

As soon as a widget is configured, a new entry in the widget instances repository is
created and the new UI element is ready to be exposed to a specific endpoint for client
delivery.

The micro-frontend framework enables the definition of different endpoints,
associating them to the widget to expose the service and the configuration to use it.
The page is then automatically created by delivering the Widget component to the
client in form of a JavaScript file (for widgets targeting Web Browsers and MS Teams
pages), the Widget configuration in form of a JSON file and rendering it in the right
view. Each endpoint is associated with exactly one widget instance (including the
widget and its configuration) that usually delivers the final layout.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 40 of 41

A3.3 INTERACTION INSTANCES – AN OUTLOOK

The Micro-frontend framework supports several interaction functionalities by
instantiating specific service instances like but not limited to crawling, search engine
or notation and context capabilities. Following three functionalities are work in
progress:

First, a crawling functionality aims at achieving developments towards the integration
of existing marketplaces. The idea is to use web scrapping techniques to discover,
digest, and import items from other marketplaces and hence provide content from
external sources to the marketplace. This includes a model-to-model transformation. A
crawling microservice is considered to read external marketplaces and/or webpages.
As a result of the crawling, the content will be retrieved and rewritten for creating
marketplace items. This is done by a transformation to Markdown files describing the
individual marketplace items. Currently, this functionality consists of two main
components, a parser retrieving the content from external sources and an AdoScript
file transforming the content for being further processes in form of marketplace items.

Second, a context and notation functionality aim at allowing an improved interaction
between external processes and systems with the marketplace model items. Currently,
this functionality is implemented by using annotations semantically leveraging the
marketplace items. The items in the marketplace model are annotated with context
details in form of RDF ontologies. This annotation approach enables a targeted search
for capabilities related to the annotations. Furthermore, semantic similarities can be
easier retrieved between marketplace items and external processes or systems.

Third, a search engine functionality aims at improving the user-friendliness of the
marketplace. On the one hand, traditional keyword searches can be supported as well
as on the other hand a smarter search behavior can be offered based on the
aforementioned annotations. In contrast to traditional search functionalities where
often exact keyword or full text searches are applied, the smart annotation-based
search approach also retrieves “similar” (in terms of semantic distance) among the
search results.

 D2.3 Change2Twin
(DT-ICT-03-2020-951956)

 41 of 41

APPENDIX B IDENTIFIED REQUIREMENTS

TABLE 3 INDETIFIED REQUIREMENTS AND EXPACTATIONS FOR MARKETPLACE

From Requirement/expectation Status
WP2 partners Advanced search capabilities Last developments

Crawling 3rd party marketplaces Last developments
Direct use of offering via the
marketplace (shopping cart)

In development

UI improvement Under revision
User management In development
Offering’s infrastructure
requirements

Concept phase

Marketplace statistics Ready for owner, concept
phase for users and
offering owners

Onboarding Shaped, but still in
progress

Review
committee

UX improvement Under discussion, some
work in development

DIH API for platform integration Under review
Search engine Last developments
Pricing schemes In development
Success stories Work in progress (UX,

search functionality, user
management)

WP1 partners:
T1.4 on
stakeholder’s
entry points to
Marketplace

Different search criteria for each
stakeholder

Under revision

Categorize offerings per region
Users recommendation system
Solution provider to update offering
description
Solution provider to monitor
effectiveness

	TABLE OF CONTENTS
	1 Introduction
	1.1 Brief marketplace overview
	1.2 Ongoing developments
	1.3 Reading guide

	2 Operating the Marketplace
	2.1 Current status
	2.2 Onboarding
	2.3 Infrastructure
	2.4 Evaluation framework

	3 Improving the Marketplace
	3.1 User management tool
	3.2 Onboarding tool
	3.3 Monitoring tool
	3.4 Shopping cart
	3.5 Assessment tool
	3.6 Advanced search tool
	3.7 3rd party marketplace crawler

	4 Summary
	Appendix A Technical details of the portal
	A1 Architecture overview
	A2 Olive Microservice Controller
	A2.1 Olive microservice definition
	A2.1.1 Microservice inputs definition
	A2.1.2 Microservice Outputs definition
	A2.1.3 Microservice definition with ADOxx model
	A2.1.4 Connectors collection
	A2.2 Microservice instantiation
	A3 Olive Micro-frontend Framework
	A3.1 UI widget definition
	A3.2 UI widget instantiation
	A3.3 Interaction Instances – an outlook

	Appendix B Identified requirements

